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1 Background and High-Level Project Objectives

Our work in Explainable Expert Systems (EES) had two goals: to extend and enhance the

range of explanations that expert systems can offer, and to ease their maintenance and

evolution. As suggested in our proposal, these goals are complementary because they place

similar demands on the underlying architecture of the expert system: they both require

the knowledge contained in a system to be explicitly represented, in a high-level declarative

language and in a modular fashion.

With these two goals in mind, the Explainable Expert Systems (EES) framework has

been designed to remedy limitations to explainability and evolvability that stem from related

fundamental flaws in the underlying architecture of current expert systems. We identified

the following flaws:

1. A weak knowledge representation with no separation of concerns. The rules

or methods of current expert systems mix many different kinds of knowledge, such

as domain facts, problem-solving knowledge, and terminology. This intertwining of

knowledge makes the explanations such systems can provide confusing. It also reduces

a system's modularity, making it difficult to modify.

. No design record. To provide good explanations for expert systems, it is not enough

to explain what a system is doing, it is also necessary to explain why the system is

doing what it's doing. Producing such justifications of an expert system's behavior

requires knowing how that system was designed and put together. In conventional

expert systems, the process of composing general domain facts and problem-solving

knowledge into specific rules is performed, unrecorded, in the system builder's mind.

The design decisions behind the system are not available; hence, the system cannot

provide justifications of its behavior.

3. Limited explanation techniques. Most current expert systems use simple methods

(templates or canned text) to produce explanations and cannot participate in a dialogue

with the user, to clarify mis-understanding or elaborate on a response. Yet, explanation

is a highly interactive process and producing explanations is a complex problem.

We first concentrated on the problem of good explanations. As we will see later, the solution

to this problem also supports our goal of providing a framework for expert systems in which

maintenance and evolution is eased.

We approached the problem of providing good explanations on two fronts. On one hand

we developed a framework in which the knowledge necessary to provide good explanations

in captured, in a form usable by an explanation module: the knowledge that justifies the

system's specific actions is explicitly represented, in a modular and declarative fashion, using

a high-level knowledge representation language that supports different levels of abstraction.

In this framework, the specific actions necessary to solve an instance of a problem is then

derived automatically from the underlying knowledge sources, and derivation knowledge (or

design record) is kept.

To support good explanations, however, a system not only needs to capture additional

knowledge, but it also needs to present its explanations in a flexible and responsive man-

ner. Conventional explanation facilities are neither flexible nor responsive because they use
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template-basednatural languagegenerationtechniquesto produce 'one-shot' explanations.
Eachexplanation canbe presentedin only oneway. If the user fails to understandan expla-
nation, the systemcannot offer a clarifying alternative explanation. Becausesuch systems
donot understandhow their own explanationswereput together, they cannot answerusers'
queriesin the context of an on- goingdialogue. To confront theseproblems, we have de-
velopeda new approachto explanation production - one which supports dialoguesand in
which text is synthesizeddirectly from the underlying knowledgesources.

Section2 presentsour work on representingthe knowledgethat is necessaryto support
good explanations and describesthe resulting EES framework together with an example.

Section 3 presents our approach to explanation and illustrates it with a sample dialogue.

Section 4 explains how the EES framework also supports our goal of easing evolution and

maintainability of expert systems. Finally, Section 5 summarizes our accomplishments and

Section 6 presents the publications done under this contract.

2 Capturing the knowledge required for explanations

An explanation of an expert system's behavior is more than simply an explanation of what

a system is doing. It is often also necessary to explain why the system is doing what it's

doing. To producing such justifications, a system must have general knowledge about the

domain, about how to solve a problem in that domain, and about how specific actions

were derived from more general principles. A system must thus know how it was designed

and put together. Of course, capturing the complete design rationale behind a system

is a daunting task. In the Explainable Expert Systems framework, we have focussed our

attention on capturing the aspects of a system's design that are important for producing

good explanations, including justifications of the system's actions, explications of general

problem-solving strategies, and descriptions of the terminology used by the system. In

particular, we have focussed on capturing how a general principle was applied in a particular

domain or a particular case. In EES, we can represent both the general principles from which

the system was derived and how the system was derived from those principles.

2.1 From General Principles to Specific Actions

To capture the design rationale behind an expert system, EES supports representation of the

general principles from which the system is designed. For example, in a medical domain,

one can explicitly represent the principle that, before giving a drug, one should determine

whether the patient may be overly sensitive to it and adjust the dosage accordingly. As a

result, this principle can be presented to a user to explain an action derived from it.

Being able to explain this principle, however, is not enough. It is also necessary to

explain how the general principle has been applied to the particulars of the problem at hand.

In fact, often the users of an expert system will already share an understanding of the general

principles upon which the system is based. They will, however, have questions such as: "Why

is this particular finding important in diagnosing the patient?" "Why is it important to know

this particular lab value?" Producing responses to these questions involves showing how the

immediate concerns of the expert system (such as the value of some finding) arise as a
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consequenceof instantiating the generalprincipleswith the particulars of the domain. The
EES framework has been designed to support exactly this sort of explanation.

To provide this support, the system needs a way of representing the general problem-

solving principles, the domain knowledge that will be used to specialize the principles, and

mechanisms for linking the principles to the specifics of the domain. To this end, EES

provides:

A representation for domain-independent and domain-dependent problem-

solving principles. The framework must represent these principles so that it can

explain how they have been specialized to particular situations. EES has adopted a

plan-based approach to the representation of problem-solving knowledge. Problem-

solving principles, whether general or specific, are represented as plans. Each plan has

a capability description describing what the plan is useful for (e.g., 'diagnose faulty

component', or 'find the truth value of a conjunction'). During problem-solving, de-

scriptions of tasks to be performed are posted as goals. Plans that may be applicable

for achieving a particular goal are found by matching the goal against the capability

descriptions of the system's plans. Each plan contains a method which is a sequence

of steps for achieving the goal.

A representation for domain knowledge. The system must have knowledge that

describes how the domain operates. For example, in a system for diagnosing problems

with an electronic circuit, such knowledge might include the circuit schematic and

descriptions of the behavior of the devices that make up the circuit. This knowledge

is used by the EES framework in applying a general principle to a specific problem.

In EES, domain models are constructed using the conceptual structures of a KL-ONE

style knowledge representation system (Brachman and Schmolze, 1985) and are thus

organized into a generalization hierarchy.*

In addition to domain-specific concepts, a domain model in EES also includes a

number of abstract, domain-independent concepts such as decomposable-object or

generalized-possession. These abstract concepts serve as the foundations upon

which the domain specific portion of the model is built. _

A way of linking problem-solving principles and domain knowledge. A key

explanation problem that EES has addressed is the problem of explaining how a specific

action that the system is taking follows from one of the general principles that the

system is based upon. The program writer in EES is responsible for performing the

reasoning that produces specific actions from general principles. It does so through two

mechanisms. The first is specialization. A capability description for a plan may contain

variables which are bound when the plan is matched against a goal. For example, in

*We have used several KL-ONE style representation languages during the course of the project, and in

fact developed one ourselves because of the expressibility limitations of current languages. Our results while

developing this language were later folded into LOOM (MacGregor, 1988; MacGregor, 1991), the knowledge

representation language we adopted for the final version of the system.

tSome of these abstract concepts are pre-defined and come from the Penman Upper Model (Bateman et

al., 1989). The distinctions that are made among concepts in the upper model reflect some of the distinctions
that need to be made in paraphrasing the conceptual model into natural language explanations.



the goal 'diagnose faulty component' the term component is a variable that can match

any concept of the class component. If this capability description is matched against

the goal 'diagnose faulty DECServer' then component will be bound to 'DECServer'.

Before the method part of the plan is run, all occurrences of component in the method

are replaced by 'DECServer'. This process of specialization is recorded so that the

relation between specific actions taken by the system and the more general principles

they stem from may be explained.

The second mechanism for specializing general principles to specific actions is refor-

mulation. In EES, if no plans can be found to achieve a goal, the system attempts to

reformulate the goal into a new goal (or set of goals) for which plans can be found, and

which is equivalent to the original goal. To reformulate a goal, the system must under-

stand what it means. In EES, we represent goals as conceptual structures composed

from concepts in the underlying knowledge representation. By representing goals in

this way, we capture the semantics of the goals so that reformulation can be performed.

It is primarily through reformulation that domain knowledge is integrated into the pro-

cess of realizing specific actions from general principles. As an example, if the system's

domain knowledge states that concept-a - concept-b and no plans can be found to

achieve the goal, 'diagnose x', where x is a specialization of concept-a, the system will

use its knowledge of the equivalence to reformulate the original goal into a new one,

'diagnose y', where y is a specialization of concept-b. This results in posting a goal

which is equivalent to the original goal but has been reformulated so that additional

candidate plans can be considered. Like the process of specialization described above,

the process of reformulation is recorded, so that the linkage can be explained. Several

kinds of reformulations are possible, including:

- a covering reformulation, which may be applied when a goal can be split into

several subgoals, which together cover the original goal.

- an individualization reformulation, which occurs when a goal over a set of objects

(such as evaluate symptoms) can be turned into a set of goals over each of the

individual items in the set (e.g., evaluate symptom-l, evaluate symptom-2,

etc).

- a redescription reformulation, which can be applied when the goal can be re-

described in different terms, using terminological mappings which are defined in

the domain model.

A block diagram of the resulting framework is shown in Figure 1.

2.2 An example

To illustrate our points, we give examples from the Program Enhancement Advisor (PEA),

a prototype expert system built using EES (Neches et aI., 1985). PEA is an advice-giving

system intended to aid users in improving their Common Lisp programs by recommending

transformations that enhance the user's code. PEA recommends transformations that im-

prove the "style" of the user's code. It does not attempt to understand the content of the
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Figure 1: The Explainable Expert System framework

user's program. The user supplies PEA with the program to be enhanced. PEA begins the di-

alogue with the user by asking what characteristics of the program he would like to improve.

The user may choose to enhance readability and/or maintainability. PEA then recommends

transformations that would enhance the program along the chosen dimensions. After each

recommendation is made, the user is free to ask questions about the recommendation.

Using a conventional expert system building approach, PEA would have consisted of

a collection of transformation rules for each characteristic to be enhanced, indicating a

'bad programming style' (with respect to that specific characteristic) to be replaced by a

'good programming style'. For example, to enhance maintainability, the system would have

included a set of rules such as 'replace setq with serf'. The problem with this approach is

that it is not possible to justify why a particular transformation achieves the goal of enhancing

the program. One would like the system to explain that serf is being recommended as a

replacement for setq because it is a more general construct and hence using it would make

the program easier to maintain) Unless the rationale behind the transformations is captured,

$Some readers (and users) may disagree with this particular example, and feel that replacing setq with

serf does not improve the maintainability of a program. In such situations, seeing the rationale behind the



it is not possible to give such explanations.

In the EES framework, the knowledge required to produce such explanations is captured.

Specific actions, such as the ones above, are derived from general principles and domain

knowledge. Building PEA in the EES framework requires building a domain model that

describes the various concepts and relations used in the domain, as well as a plan knowledge

base that includes the general principles for solving the problem of enhancing a program.

The domain knowledge in PEA. The domain knowledge in PEA contains definitions of

the terms used in the domain, together with their relations (structural or causal). It includes

descriptive knowledge about LISP programming constructs and transformations between ac-

tual constructs. This descriptive knowledge explicitly states facts such as:

1. A program is a decomposable object owned-by a user;

2. A transformation has two parts: a left-hand-side (lhs), which is a program construct,

and a right-hand-side (rhs), which is a program construct;

3. A maintainability-enhancing-transformation is a transformation whose rhs' use is more

general than its lhs' use;

4. Storage locations are named-by s-expressions;

5. An access function is an s-expression;

6. A generalized variable is named-by an access-function;

7. A simple variable is named-by a symbol;

8. Serf can be used to assign a value to a generalized variable;

9. Setq can be used to assign a value to a simple variable;

10. The setq-to-setf transformation is a maintainability-enhancing-transformation whose

lhs is the setq function and whose rhs is the serf function.

11. Local transformations and distributed transformations together cover the set of

transformations. _

Using a KL-ONE style formalism, all of this information is represented as concepts orga-

nized into a generalization hierarchy, and relations (or roles) between concepts. So, for exam-

ple, fact (1) above is represented by having the concept transformation be a specialization

of the concept decomposable-obj act (using the is-a link). Fact (2) above is represented by

the relations lhs and rhs (both specializations of the relation generalized-possession),

recommendation is critical, because it helps a user understand why the system made its recommendation.
Local transformations are those whose applicability can be determined by looking at a single s-expression

(such as setq-to-setg), while distributed transformations require looking at several places in a user's pro-
gram before their applicability can be determined. An example of a distributed transformation would be
replacing explicit accessors such as CARand CtDlt with record-based accessors. This distinction is important
because different methods are used to search for opportunities to apply each kind of transformation.
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Figure 2: Portion of the domain model in PEA

both of which relate the concept transformation to the concept program-constructfl A

portion of this 'semantic net' representation concerned with representing the concepts of

simple and generalized variables in Lisp is shown graphically in Figure 2.

In addition to its use in deriving specific actions from general principles, this domain

knowledge is employed when responding to users' requests for descriptions of terms used

by the system. Novice users often need to ask questions about terminology in order to

understand the system's responses and to be able to respond appropriately when answering

the system's questions, and experts may want to ask such questions to determine whether

the system's use of a term is the same as their own.

IThe representation scheme is actually more complex, allowing value and number restrictions in roles. A
complete description of a KL-ONE type knowledge representation scheme is beyond the scope of this paper.
See (Brachman and Schmolze, 1985; Moser, 1983) for more information on this topic. We have included here
only the elements of the representation needed for our examples.



(DEFINE-PLAN enhance- charact erist ic-of-program

:GOAL (enhance (obj ((characteristicl isa characteristic)

property-of program) )

(actor pea-system) )

:INPUT ((programl isa program))

:OUTPUT ((program2 lea program))

:METHOD (apply-transformation

(actor pea-system)

(obj

(set (transformation

that

(enhance

(obj (characteristicl

property-of program) )))))

(recipient program)))

Figure 3: Plan to enhance a characteristic

General Principles in PEA. As mentioned previously, general principles are represented

as plans consisting of a capability description that describes the goal a plan is capable of

achieving and a method, which is a sequence of steps for achieving this goal. The capability

description of a plan is written in terms of conceptual structures defined in the domain

model. For example, the plan to enhance a characteristic of a program has the following

capability description:

(enhance (obj ((characteristicl isa characteristic)

property-of program))

(actor pea-system))

In thisexample, enhance, program, pea-system and characteristic are allconceptual

structuresthat have been defined in the domain model. Similarly,property-of and actor

are roles defined in the domain model. (These are actually among the abstract concepts

defined in the upper model.) The body of thisplan embodies the general principlethat to

enhance a characteristicof a program, the system must apply transformations that enhance

that characteristic.This plan isshown in Figure 3.11

Since the method of the plan in Figure 3 willpost the subgoal of applying transforma-

tions,the system needs ways of doing the application.Once again,those means are described

by general principles.For example, PEA includes a general principlestating that to apply

a localtransformation to a program, the system must iterateover each s-expressionin the

program attempting to apply the transformation when the lhsof the transformation matches

the s-expressionunder consideration.

IIFor clarity sake, we have simplified the notation for posting subgoals in this figure.
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From general plans to the specific actions of PEA. We now illustrate how specific

actions (such as apply-SETQ-to-SETF transformation) are obtained from the domain model

and the general principles. In EES, the program writer is responsible for deriving the actual

expert system from the various knowledge bases. It does so using a goal refinement process.

Given a high-level goal that represents the abstract task the expert system is to accomplish,

the program writer finds the plan capable of achieving that goal and posts the appropriate

subgoals. If no plans are applicable, the program writer tries to reformulate its goal, using
the set of reformulations described above.

Consider, for example, the goal of enhancing maintainability. The program writer

first applies the plan described in Figure 3, using the hct from the domain model that

maintainability is a specialization of characteristic. This illustrates how the concep-

tual structures used to express the capability description of a plan allow the system to

match specific goals to general plans. In this case, the program writer uses specialization

and instantiates the general plan to post the subgoal:

apply transformations that enhance maintainability

The system then tries to achieve this goal and finds that no plans match it. The program

writer then tries to reformulate this goal, based on the semantics of the goal itself and the

domain knowledge. In this case, the system knows from the domain knowledge that local

transformations and distributed transformations together cover the set of transformations

(fact (11) on page 8). The program writer can thus perform a covering reformulation to

transform its original goal into the two goals:

apply local transformations that enhance maintainability

apply distributed transformations that enhance maintainability

Because local and distributed transformations together cover transformations, the system

knows that if both of these subgoals are achieved then the original goal will also have been

achieved.

Let us continue the example by focusing on the first subgoal. The system attempts to

find a plan to achieve this goal. Still no plans are found, but the system is able, again based

on its domain knowledge (specifically, fact (3) on page 8 above), to reformulate its goal. This

time a redescription reformulation is used to create the subgoal:

apply local transformations whose right hand side's use is more

general than its left hand sideJs use.

It still cannot find a plan matching this goal, because the system has no plan capable of

applying a set of transformations. Using an individualization reformulation, however, it is

able to split this goal over all the instances of 'local transformations whose right hand side's

use is more general than its left hand side's use'. It thus now posts the set of subgoals:

apply setq-to-setf transformation

apply replaca-to-setf transformation

The program writer is now able to find plans to achieve these specific subgoals and the

specific actions (e.g., 'replace setq with setf') are generated.
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Figure 4: The design history

During the refinement process just described, the program writer records all of its steps,

including the use of reformulations, keeping track of the type of reformulation that was used

at each point, what aspects of the domain model were examined, and how general concepts

expressed in a general plan were specialized to form a more specific plan. This gives rise to

a design history, shown in Figure 4, which indicates how specific actions (the leaves of the

tree) were derived from general principles. This design history is what captures the rationale

behind the specific actions, and, as illustrated below, it is used by the system's generation

component to provide explanations of the system's behavior.
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3 Better Explanation Production

Explanation systems must produce multisentential texts, including justifications of their

actions, descriptions of their problem-solving strategies, and definitions of the terms they

use. The template-based explanation generation techniques used in conventional expert

systems suffer from a number of limitations. In particular, they are very inflexible and often

do not follow standard patterns of discourse experts are used to. As a result, texts are

often hard to understand by the end users. Furthermore, they cannot provide elaborations,

clarifications, or respond to follow-up questions in the context of an on-going dialogue. Yet,

these capabilities are crucial, because studies of naturally occurring advisory interactions

show that experts and novices must negotiate the problem to be solved as well as a solution

that the novice understands and accepts (Pollack et al., 1982; Moore, 1989b).

Researchers in Natural Language Generation have developed techniques to produce

coherent multisententiM texts that follow standard patterns of discourse: In particular, they

have shown that schemata of rhetorical predicates (McKeown, 1985; McCoy, 1989; Paris,

1988) or rhetorical relations (Hovy, 1991) can be used to capture the structure of coherent

multisentential texts. Schemata are script-like entities that encode standard patterns of

discourse structure. Associating a schema with a communicative goal allows a system to

generate a text that achieves the goal. However, we have found that schemata are insufficient

as a discourse model for advisory dialogues. Although they encode standard patterns of

discourse structure, schemata do not include a representation of the intended effects of the

components of a schema, nor how these intentions are related to one another or to the

rhetorical structure of the text. While this may not present a problem for systems that

generate one-shot explanations, it is a serious limitation in a system intended to participate

in a dialogue where users can, and frequently do, ask follow-up questions (Moore and Paris,

1989a; Moore and Paris, 1992b).

To participate in a dialogue a system must be capable of reasoning about its own

previous utterances, as follow-up questions must be interpreted in the context of the ongoing

conversation, and the system's previous contributions form part of this context. In particular,

an explanation system must represent and reason about the intended effect of individual parts

of the text on the hearer, as well as how the parts relate to one another rhetorically. This

allows the system to be able to reason about its previous utterances, figuring out what it was

trying to say and how it said it, both to interpret and to answer users' follow-up questions.

We have developed a text planner that explicitly plans explanations based on the in-

tentions of the speaker at each step (the discourse goals) and that notes the rhetorical

relation that holds between each pair of text spans. When a text is produced, the planner

records its planning process as well as the user's utterances in a dialogue history, and rea-

sons about it to interpret and to answer users' follow-up questions (Moore and Paris, 1989a;

Moore and Paris, 1992b).

The next two sections describe this new text planner and provide an example of the

type of dialogue our system is capable of handling.

13
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3.1 Planning a response and answering a follow-up question

An overview of the explanation generation facility and its relation to other components in the

system is shown in Figure 5. The planning process begins when a discourse goal is posted.

This may come about in one of two ways. First, in the process of performing a domain task,

the expert system may need to communicate with the user, e.g., to ask a question or to

recommend that the user perform an action. To do so, it posts a discourse goal to the text

planner. Alternatively, the user may request information from the system. In this case, the

query analyzer interprets the user's question and formulates a discourse goal. Note that a

discourse goal such as "achieve the state where hearer knows about concept c" is really an

abstract specification of the response to be produced.

When a discourse goal is posted, the text planner searches its library of explanation

strategies looking for strategies that can achieve the goal. From these, the planner selects a

strategy (an operator) based on several factors, including what the user knows (as indicated

in the user model), the conversation that has occurred so far (as indicated in the dialogue

history), the relative specificity of the candidate operators, and whether or not each operator

14



requiresassumptionsto be made. The knowledgeof preferences is encoded into a set of

selection heuristics - see (Moore, 1989a). The selected operator may in turn posts other

subgoals for the planner to refine, and planning continues until primitive operators, or speech

acts, are reached.

When a speech act is reached (e.g., INFOPd_I X, ASK Y), the system constructs a spec-

ification that directs the realization component, Penman (Mann and Matthiessen, 1985;

Matthiessen, 1984; Penman Natural Language Generation Group, 1989), to produce the cor-

responding English utterance. The system builds these specifications based on the type of

speech act, its arguments, and the context in which it occurs.** As the planner examines

each of the arguments of the speech act, new goals may be posted as a side effect. If one

of the arguments is a concept that the user does not know (as indicated in the user model),

a satellite subgoal to define this new concept is posted. In addition, if the argument is a

complex data structure which cannot be realized directly by English lexical items, the plan-

ner will have to "unpack" this complex structure, and, in so doing, will discover additional

concepts that must be mentioned. Again, if any of these concepts are not known to the user,

subgoals to explain them are posted. Finally, planning is complete when all subgoals in the

text plan have been refined to speech acts.

As the system plans explanations, it records its decisions in a text plan, which keeps track

of any assumptions made about what the user knows tt as well as alternative strategies that

could have been used to achieve discourse goals. This text plan captures the 'design rationale

behind the explanation', by recording the discourse goal structure of the text produced, the

relationships between parts of the text, and an indication of the role individual sentences

and clauses play in the overall explanation structure (Moore and Paris, 1989b).

After a response has been generated, the system awaits feedback from the user. The

recorded text plan provides the dialogue context the system needs to 1) disambiguate the

user's follow-up questions in context, and 2) plan explanations that elaborate on previous

explanations or correct mis-understandings. Due to the central role it plays in supporting

dialogue and correcting mis-understandings, capturing the design rationale behind the ex-

planation is as important to providing good explanatory capabilities as capturing the design

rationale behind the expert system itself.

3.2 Participating in a Dialogue: An Example

We now illustrate how our system can plan explanations and participate in a dialogue with

the user, again using PEA aS our sample domain. A sample dialogue with PEA appears in

Figure 6. After the user supplies PEA with the program to be enhanced, PEA begins the

dialogue by asking what characteristics of the program the user would like to improve. In

this example, the user chooses maintainability. PEA then recommends transformations that

would enhance the program along this dimension. After each recommendation is made, the

user is free to ask questions about the recommendation.

There are several things to note about this dialogue. First, to answer the "why?" in

line 4, the system explains its recommendation by examining the design rationale that has

**Bateman and Paris (1989) have also investigated the problem of phrasing utterances for different types
of users and situations.

ttThis is because we cannot assume the user model is complete and correct (Moore and Paris, 1992a).
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SYSTEM (I)

USER (2)

SYSTEM (3)

USER (4)

SYSTEM (5)

USER (6)

SYSTEM (7)

USER (8)

SYSTEM (9)

USER (10)

SYSTEM (11)

What characteristics of the program would you like to enhance?

Maintainability.

You should replace (setq x 1) with (setf x 1).

Why?

I'm trying to enhance the maintainability of the program by applying trans-

formations that enhance maintainability. Setq-to-setf is a transformation

that enhances maintainability.

Why?

Transformations that enhance maintainability are defined as transformations

whose right-hand-side use is more general than its left-hand-side use. Serf

can be used to assign a value to any generalized-variable. Setq can only be

used to assign a value to a simple-variable.

What is a generalized-variable?

Simple-variables are storage locations named by symbols. This concept can

be generalized to a storage location that can be named by any accessor

function. These storage locations are called generalized-variables.

Huh?

For example, the car and cdr of a cons are generalized-variables, named by
the accessor functions car and cdr.

Figure 6: Sample Dialogue

been recorded (shown in Figure 4). Second, the next "why?" in line 6 is actually ambiguous.

Among other things, it could be a question about the super-goal, that is: "Why are you

trying to enhance the maintainability of the program?" This is in fact the way that MYCIN

(Buchanan and Shortliffe, 1984; Shortliffe, 1976) would interpret this question. However,

most people interpret this "why?" as a question about the statement that is currently

the focus of attention (i.e., the thing most recently said). That is, most people would

interpret the question on line 6 as: "Why is setq-to-setf a transformation that enhances

maintainability?" Our system is able to make this interpretation because it understands the

structure of the explanations it has produced - as will be explained below, and because it

has heuristics for interpreting such questions based on its dialogue context - see (Moore,

1989a). Note that to produce the answer on line 7, the system makes use of the domain

model and of the fact that the goal was reformulated using a redescription. Finally, in line 9,
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In Plan Language Notation:

EFFECT: (GOAL ?hearer (DO ?hearer ?act))

CONSTRAINTS: (NUCLEUS)
NUCLEUS:

(RECOMMEND ?speaker ?hearer (DO ?hearer ?act))

SATELLITES:

(((PERSUADED ?hearer (DO ?hearer ?act)) *optional*)

((COMPETENT ?hearer (DO ?hearer ?act)) *optional*))

En_;lish Paraphrase:

To make the hearer want to do an act,

IF this text span is to appear in nucleus position, THEN
1. Recommend the act

AND optionally,

2. Achieve state where the hearer is persuaded to do the act

3. Achieve state where the hearer is competent to do the act

Figure 7: High-level Plan Operator for Recommending an Act

a piece of terminology is defined. When the user indicates (in line 10) that he or she doesn't

understand this definition, the system is able to produce a follow-up explanation to clarify

things by giving examples (line 11). The system is able to recover from such failures because

it understands and can reason about the text it previously produced. In this case, the system

needed to know what discourse goal it was trying to achieve and how it achieved this goal

(in order to avoid generating the same text). In addition, the system has recovery heuristics

that allow it to choose the 'most appropriate' strategy when an alternative explanation is

required (Moore, 1989b). This example thus illustrates how the design rationale behind an

explanation enables the system to provide responsive explanatory capabilities.

We now explain this dialogue in detail. The dialogue starts when the user indicates a

desire to enhance the maintainability of his or her program. To enhance maintainability,

the expert system determines that the user should replace SETQ with SETF. To recommend

this transformation, the expert system posts the communicative goal (GOAL USER (DO USER

REPLACE-2)) to the text planner. This goal says that the speaker would like to achieve the

state where the hearer has adopted the goal of performing the act REPLACE-2, that is the

act of replacing SETQ with SETF.

A plan operator capable of satisfying this goal is shown in Figure 7. As shown in the

figure, operators have constraints as to their applicability. Constraints may refer to facts

in the system's domain knowledge bases, information in the user model, information in the

dialogue history, or information about the evolving text plan. The operator shown in this

figure has only one constraint: it is applicable when expanding a goal that is in a nucleus

position in the text plan tree so far. This is the case here as this is the first goal posted.
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The operator in turn posts three subgoals, separated into the nucleus and satellites:

• the nucleus: this is the subgoal most essential to achievement of the operator's effect.

Every operator must contain a nucleus.

• the satellites: additional subgoal(s) that may contribute to achieving the effect of the

operator. An operator can have zero or more satellites. When present, satellites may be

required or optional. Unless otherwise indicated, a satellite is assumed to be required.

In this case, the nucleus of the operator indicate to recommend the action ((RECOMMEND

SYSTEM USER (DO USER REPLACE-2))) and, optionally to persuade the user to do the action

and make him competent to perform the action. Because the satellites are optional, they

are not expanded at this point (Moore and Paris, 1992a), and only the RECOMMEND subgoal

is posted. This is a primitive speech act and line [3] of the sample dialogue is generated.

As the user asks "Why?" (line [4]), the query analyzer now posts the goal to persuade

the user to perform the action.: (PERSUADED User (Goal User (DO User REPLACE-2))).

A plan operator for achieving this goal is shown in Figure 8. When attempting to satisfy the

constraints of this operator, the system first checks the constraint (STEP REPLACE-2 ?goal).

This constraint states that, in order to use this operator, the system must find a domain

goal, ?goat, that REPLACE-2 is a step in achieving. To find such goals, the planner searches

the expert system's problem-solving knowledge. In particular, it examines the design history

(shown in Figure 4). In this example, the applicable expert system goals, listed in order from

most to least specific, are:

apply-SETq-to-SETF-transformation

apply-local-transformations-whose-rhs-use-is-more-general-than-lhs-use

apply-local-transformations-that-enhance-maintainability

apply-transformations-that-enhance-maintainability

enhance-maintainability

enhance-program

Thus, six possible bindings for the variable ?goal result from the search for domain goals

that REPLACE-2 is a step in achieving.

The second constraint of the current plan operator, (GOAL ?hearer ?goal), is a con-

straint on the user model stating that ?goal must be a goal of the hearer. Not all of the

bindings found so far will satisfy this constraint. Those which do not will not be rejected

immediately, however, as we do not assume that the user model is complete. Instead, they

will be noted as possible bindings, and each will be marked to indicate that, if this binding

is used, an assumption is being made, namely that the binding of ?goal is assumed to be

a goal of the user. The selection heuristics can be set to tell the planner to prefer choosing

bindings that require no assumptions to be made.

In this example, since the user is employing the system to enhance a program and

has indicated a desire to enhance the maintainability of the program, the system infers

the user shares the top-level goal of the system (ENHANCE-PROGRAM), as well as the more

specific goal ENHANCE-MAINTAINABILITY. Therefore, the two goals that completely satisfy

the first two constraints of the operator shown in Figure 8 are ENHANCE-PROGRAM and EN-

HANCE-MAINTAINABILITY. Finally, the third constraint indicates that only the most specific
t
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In Plan Lan_;ua_;e Notation:

EFFECT: (PERSUADED ?hearer (DO ?hearer ?act))

CONSTRAINTS: (AND (STEP ?act ?goal)

(GOAL ?hearer ?goal)

(MOST-SPECIFIC ?goal)

(CURRENT-FOCUS ?act)

(SATELLITE))

NUCLEUS: (((FORALL ?goal

(MOTIVATION ?act ?goal)) *required*))
SATELLITES: nil

English Paraphrase:

To achieve the state in which the hearer is persuaded to do an act,

IF the act is a step in achieving some goal(s) of the hearer,

AND the goal(s) are the most specific along any refinement path
AND act is the current focus of attention

AND the planner is expanding a satellite branch of the text plan

THEN motivate the act in terms of those goal(s).

Figure 8: Plan Operator for Persuading User to Do An Act

goal along any refinement path to the act should be chosen. This constraint encodes the

explanation principle that, in order to avoid explaining parts of the reasoning chain that

the user is familiar with, when one goal is a subgoal of another, the goal that is lowest in

the expert system's refinement structure, i.e., most specific, should be chosen. Note that

ENHANCE-MAINTAINABILITY isa refinement of ENHANCE-PROGKAM. Therefore, ENHANCE-MAIN-

TAINABILITY is now the preferred candidate binding for the variable ?goal.

The nucleus of the chosen plan operator is now posted, resulting in the subgoal

(MOTIVATION REPLACE-2 ENHANCE-2), where ENHANCE-2 is enhance maintainability. The

plan operator chosen for achieving this goal is the one shown in Figure 9. _ This opera-

tor motivates the replacement by telling the user which goal it is trying to perform (here

ENHANCE-2, i.e., to enhance maintainability). To do so, the goals (INFORM System User

ENHANCE-2) and (MEANS REPLACE-2 ENHANCE-2) are posted. Planning continues and the

system generates line [5] of the sample dialogue. The corresponding text plan recorded in

the dialogue history is shown in Figure 10.

At this point, the user asks "why". This why-question is ambiguous. For example, it

could mean "why is setq-to-setf a transformation that enhances maintainability?", or "why

*tThis is only one of the operators available to achieve this goal. In general, there are a number of plans
capably of achieving a given discourse goal. This gives the system flexibility and allows it to recover from
failure (Moore and Paris, 1991; Moore and Paris, 1992b).
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EFFECT: (MOTIVATION ?act ?goal)

CONSTRAINTS: (AND (STEP ?act ?goal)

(GOAL ?hearer ?goal))

NUCLEUS: (INFORM System ?hearer ?goal)

SATELLITES: (((MEANS ?act ?goal) *required*))

Figure 9: Plan Operator for Motivating any Action by Stating the Shared Goals that Act is

a Step in Achieving

are you enhancing the maintainability of the program by applying transformations that

enhances maintainability?", or still "why are you trying to enhance the maintainability of

the program?". Our system is able to disambiguate this question by examining the text plan

of the previous explanation as recorded in the dialogue history and employing disambiguation

heuristics (Moore, 1989a). In particular, in this case, it uses the local context (or current

focus) - as shown in the recorded text plan - to interpret the question correctly as meaning

"why is setq-to-setf a transformation that enhances maintainability?". At this point, the

system thus posts a goal to explain to the user why setq-to-setf is a transformation that

enhances maintainability and produces the explanation on line [7].

Now the user asks a terminological question, line [8], which the system can answer

because it has a representation of the domain model. In this case, the system provides a

definition of the term, line [9]. This explanation is not understood by the user, as indicated

in his or her response, line [10], and the system needs to recover. Note here how the user

did not ask a well articulated question. Yet, the system is able to interpret it and provide

a new explanation. This is because it can reason about the previous utterance. In this

case, the system notes by examining the dialogue history that the previous explanation

was a definition, and thus tries another strategy to explain the concept. Here, it chooses

examples (line [11]). Note that it would not have been possible to answer this question

without the knowledge about what the previous explanation was trying to achieve and how

it had attempted to achieve it.

4 Enhancing Maintainability and Evolution of an Ex-

pert System

The framework we developed to supports explanation also eases evolution and maintainabil-

ity of the expert system. Because the knowledge bases are modular, changes can be local to

one of the knowledge base (i.e., one can augment the domain model or the problem solving

principles independently) and not interfere with the other parts of the system. This is in

contrast with conventional expert systems where knowledge tends to be distributed over

many rules. As a result, one small change might affect a number of rules, and a common

problem is to make sure all the rules affected are identified, and their relationships with

other rules examined to make sure the change does not result in a mal-functioning system.
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(Persuaded User (Goal User (Do User Replace-2))

N

(Motivation Replace-2 Enhance-2)

J

(Inform System User E_ance-2)

"I am trying to enhance
the nu_intainability of the program'

(Means Replace-2 Enhance-2)

s
(Inform System User Apply-3) (Bel User (Step Replace-2 Apply-3))

"applying transformations I
that enhance maintainability'

N

(Elaborate-general-specific Apply-3 Apply-4)

Local Context
N

(Inform System User (Instance-of C-4 C-3))

"Setf-to-Se{f is a transformation that
enhance maintainability'

N :Nucleus
S : Satellite
Replace-2: Replace Setq with Setf
Enhance-2: Enhance maintainability of program
Apply-3: Apply transformations that enhance maintainability
Apply-4: Apply Setq-to-Seff transformation
C-3: Transformation that enhance maintainability
C-4: Steq-to-Setftransfor_re 10: An Explanahon Text Plan

Furthermore, changed are done at the specification level, in a high-level language, not

in the code itself: that is, the domain model, the terminology definitions, or the problem

solving plans are changed. The program writer then re-derives the new system automatically.

Finally, because of the explanation facility, the user can check for validity of the knowledge

contained in the knowledge bases as well as the reasoning of the system, in a language he or

she can understand, and thus can identify problems more easily and get feedback on changes.

The resulting architecture thus also achieves our goal or easing evolution and maintain-

ability. Furthermore, it also supports re-usability: as the domain model and the problem
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solving principles can include some general information about the domain under considera-

tion, much of it can remain constant when a new application in the same domain is created.

5 Accomplishments

Status The EES framework has been implemented, and the examples shown in the paper are

actually produced by the system. The system was written in Common Lisp. The Penman

text generation system (Mann and Matthiessen, 1985; Matthiessen, 1984; Penman Natural

Language Generation Group, 1989) was used to produce actual text from the text plans

output by the text planner.

Accomplishments

The text planner developed as part of this project is the first system to support

dialogue-based explanations, and is currently one of the most sophisticated text plan-

ner available. It is now used as a point of reference in the computational linguistic

research community). Our work on the text planner also influence development of the

Penman project (Mann and Matthiessen, 1985; Matthiessen, 1984), one of the major

project in sentence generation.

The EES framework is one of the most sophisticated framework for knowledge-based

systems today, and has had a lot of influence on other important research efforts:

- It is the first framework for knowledge-based systems that integrates problem

solving and explanation; Because explanations are always generated from the

underlying knowledge bases, they are always guaranteed to be accurate and reflect

any changes to the underlying system. Furthermore, the range of explanations

EES can offer is larger than that of conventional systems;

- By using a powerful knowledge representation system (Loom), EES employs a

faster and simplified problem solver by taking advantage of Loom's powerful in-

ferencing mechanisms.

-- EES Was one of the first systems to explore and extend model-based programming

in Loom (MacGregor, 1988; MacGregor, 1991);

- Its referential capabilities and its language for plans have been later used by the

Loom project;

- The idea of reformulation is now being used by other systems (e.g., SIMS) (Arens

and Knoblock, 1992; Arens et al., 1993);

-- EES is the first system to order its library of problem solving plans in a generaliza-

tion hierarchy and use a classifier (that of Loom) to do the plan-goal match. This

technique results in an efficient semantic-based plan-goal matching algorithm.

• We have used the EES framework to construct several demonstration-size expert sys-

tems:

-- PEA, the system used here to illustrate our framework;

22



• The
and

- a prototype for an expert systemto diagnoselocal areanetworks,built in collab-
oration with DEC;

- a prototype for an expert system to assist cardiologists in the intensive-care unit

(in collaboration with Cedars Sinai Hospital in Los Angeles).

EES framework and its explanation module has received a lot of outside interest

has been used by other institutions:

- As mentioned above, we had outside collaborations with DEC and Cedars Sinai;

- Robert Kass, a PhD student at the University of Pennsylvania used the EES

framework to implement an expert system to test his ideas for his PhD work

(Kass, 1988; Kass, 1991);

- The EES text planner is used in a few institutions as a generation planning system:

• Norbert Reithinger at the University of Saarbruecken used it as a basis for

his incremental generation system (Reithinger, 1991)

• The WlP project at the German National Research Institute (DFKI) used it

the basis of their multi-modal presentational planner (Wahlster et al., 1990;

Wahlster et al., 1991b; Wahlster et al., 1991a); This project is one of the two

major multi-modal projects in the world today.

• Dr. Johanna Moore at the Computer Science Department of the University of

Pittsburgh and at LRDC uses it for the interaction module of several tutorial

systems (Carenini and Moore, 1993).
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